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Abstract.  

The chapter introduces the latest developments and results of Iterative Single Data Algo-

rithm (ISDA) for solving large-scale support vector machines (SVMs) problems. First, the 

equality of a Kernel AdaTron (KA) method (originating from a gradient ascent learning 

approach) and the Sequential Minimal Optimization (SMO) learning algorithm (based on 

an analytic quadratic programming step for a model without bias term b) in designing 

SVMs with positive definite kernels is shown for both the nonlinear classification and the 

nonlinear regression tasks. The chapter also introduces the classic Gauss-Seidel (GS) pro-

cedure and its derivative known as the successive over-relaxation (SOR) algorithm as vi-

able (and usually faster) training algorithms. The convergence theorem for these related it-

erative algorithms is proven. The second part of the chapter presents the effects and the 

methods of incorporating explicit bias term b into the ISDA. The algorithms shown here 

implement the single training data based iteration routine (a.k.a. per-pattern learning). This 

makes the proposed ISDAs remarkably quick. The final solution in a dual domain is not an 

approximate one, but it is the optimal set of dual variables which would have been obtained 

by using any of existing and proven QP problem solvers if they only could deal with huge 

data sets. 



1.0 Introduction 

One of the mainstream research fields in learning from empirical data by support 

vector machines (SVMs), and solving both the classification and the regression 

problems, is an implementation of the incremental learning schemes when the 

training data set is huge. The challenge of applying SVMs on huge data sets 

comes from the fact that the amount of computer memory required for a standard 

quadratic programming (QP) solver grows exponentially as the size of the prob-

lem increased. Among several candidates that avoid the use of standard QP 

solvers, the two learning approaches which recently have drawn the attention are 

the Iterative Single Data Algorithms (ISDAs), and the sequential minimal optimi-

zation (SMO) (Platt, 1998, 1999; Vogt 2002; Kecman, Vogt, Huang 2003; Huang 

and Kecman 2004).  

The ISDAs work on one data point at a time (per-pattern based learning) to-

wards the optimal solution. The Kernel AdaTron (KA) is the earliest ISDA for 

SVMs, which uses kernel functions to map data into SVMs’ high dimensional 

feature space (Frieß et al. 1998) and performs AdaTron learning (Anlauf and Biehl 

1989) in the feature space. The Platt’s SMO algorithm is an extreme case of the 

decomposition methods developed in (Osuna, Freund, Girosi 1997; Joachims 

1999), which works on a working set of two data points at a time. Because of the 

fact that the solution for working set of two can be found analytically, SMO algo-

rithm does not invoke standard QP solvers. Due to its analytical foundation the 

SMO approach is particularly popular and at the moment the widest used, ana-

lyzed and still heavily developing algorithm. At the same time, the KA although 

providing similar results in solving classification problems (in terms of both the 

accuracy and the training computation time required) did not attract that many 

devotees. There are two basic reasons for that. First, until recently (Veropoulos 

2001), the KA seemed to be restricted to the classification problems only and 

second, it 'lacked' the fleur of the strong theory (despite its beautiful 'simplicity' 

and strong convergence proofs). The KA is based on a gradient ascent technique 



and this fact might have also distracted some researchers being aware of problems 

with gradient ascent approaches faced with possibly ill-conditioned kernel matrix. 

In the next section, for a missing bias term b, we derive and show the equality of 

two seemingly different ISDAs, which are a KA method and a without-bias ver-

sion of SMO learning algorithm (Vogt 2002) in designing the SVMs having posi-

tive definite kernels. The equality is valid for both the nonlinear classification and 

the nonlinear regression tasks, and it sheds a new light on these seemingly differ-

ent learning approaches. We also introduce other learning techniques related to the 

two mentioned approaches, such as the classic Gauss-Seidel (GS) coordinate as-

cent procedure and its derivative known as the successive over-relaxation (SOR) 

algorithm as a viable and usually faster training algorithms for performing 

nonlinear classification and regression tasks. In the third section, we derive and 

show how explicit bias term b can be incorporated into the ISDAs derived in the 

second section of this chapter. Finally, the comparison in performance between 

different ISDAs derived in this chapter and the popular SVM software LIBSVM 

(Chang and Lin 2002) is presented. The goal of this chapter is to show how the 

latest developments in ISDA can lead to the remarkable tool for solving 

large-scale SVMs as well as to present the effect of an explicit bias term b within 

the ISDA.  

In order to have a good understanding on these algorithms, it is necessary to re-

view the optimization problem induced from SVMs. The problem to solve in 

SVMs classification is (Vapnik 1995; Cherkassky and Mulier 1998; Cristianini 

and Shawe-Taylor 2000; Kecman 2001; Schölkopf and Smola, 2002) 
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which can be transformed into its dual form by minimizing the primal Lagrangian 
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The standard change to a dual problem is to substitute w from Eq. (4) into the 

primal Lagrangian Eq. (3) and this leads to a dual Lagrangian problem below, 
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subject to the box constraints Eq. (7) where the scalar K(xi, xj���� �xi)
T �xj). In 

the standard SVMs formulation, Eq. (5) is used to eliminate the last term of Eq. 

(6) that should be solved subject to the following constraints  
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As a result the dual function to be maximized is Eq. (9) with box constraints Eq. 

(7) and equality constraint Eq. (8). 
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An important point to remember is that without the bias term b in the SVMs 

model, the equality constraint Eq. (8) does not exist. This association between bias 

b and Eq. (8) is explored extensively to develop ISDA schemes in the rest of the 

chapter. Because of the noise, or due to the generic class’ features, there will be an 

overlapping of training data points. Nothing, but constraints, in solving Eq. (9) 

changes and, for the overlapping classes, they are 

C� �i � 0, i = 1, …, l and  
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0
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i i
i
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�

�� , (10),(11) 



where 0 < C < �, is a penalty parameter trading off the size of a margin with a 

number of misclassifications. This formulation is often referred to as the soft mar-

gin classifier. 

In the case of the nonlinear regression the learning problem is the maximiza-

tion of a dual Lagrangian below  
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Again, the equality constraint Eq. (13) is the result of including bias term in the 

SVMs model. 

2.0 Iterative single data algorithm for positive definite kernels 

without bias term b 

In terms of representational capability, when applying Gaussian kernels, SVMs 

are similar to radial basis function networks. At the end of the learning, they pro-

duce a decision function of the following form  
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However, it is well known that positive definite kernels (such as the most popular 

and the most widely used RBF Gaussian kernels as well as the complete polyno-

mial ones) do not require bias term b (Evgeniou et al, 2000), (Kecman, 2001). 

This means that the SVM learning problems should maximize Eq. (9) with box 

constraints Eq. (10) in classification and maximize Eq. (12) with box constraints 



Eq. (14) in regression. In this section, the KA and the SMO algorithms will be 

presented for such a fixed (i.e., no-) bias design problem and compared for the 

classification and regression cases. The equality of two learning schemes and re-

sulting models will be established. Originally, in (Platt, 1998, 1999), the SMO 

classification algorithm was developed for solving Eq. (9) including the equality 

constraint Eq. (8) related to the bias b. In these early publications (on the classifi-

cation tasks only) the case when bias b is fixed variable was also mentioned but 

the detailed analysis of a fixed bias update was not accomplished. The algorithms 

here extend and develop a new method to regression problems too. 

2.1 Iterative single data algorithm without bias term b in classification 

2.1.1 Kernel AdaTron in classification 

The classic AdaTron algorithm as given in (Anlauf and Biehl 1989) is developed 

for a linear classifier. As mentioned previously, the KA is a variant of the classic 

AdaTron algorithm in the feature space of SVMs. The KA algorithm solves the 

maximization of the dual Lagrangian Eq. (9) by implementing the gradient ascent 

algorithm. The update i�� of the dual variables �i is given as 
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where fi is  the value of the decision function f at the point xi, i.e., 
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� � x x , and yi denotes the value of the desired target (or the 

class’ label) which is either +1 or -1. The update of the dual variables �i is given as 

min(max(0, ), )
i i i

C� � �� � �  (i = 1, ..., l) . (16b) 

In other words, the dual variables �i are clipped to zero if ( ) 0
i i

� �� � � . In the 

case of the soft nonlinear classifier (C < �) �i are clipped between zero and C, (0 

� �i � C). The algorithm converges from any initial setting for the Lagrange mul-

tipliers �i. 



2.1.2 SMO without bias term in classification 

Recently (Vogt, 2002) derived the update rule for multipliers �i that includes a 

detailed analysis of the Karush-Kuhn-Tucker (KKT) conditions for checking the 

optimality of the solution. (As referred above, a fixed bias update was mentioned 

only in Platt’s papers). The following update rule for �i for a no-bias SMO algo-

rithm was proposed  
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where Ei = fi – yi denotes the difference between the value of the decision function 

f at the point xi and the desired target (label) yi. Note the equality of Eq, (16a) and 

Eq. (17) when the learning rate in Eq. (16a) is chosen to be 1/ ( , )i i iK� � x x . The 

important part of the SMO algorithm is to check the KKT conditions with preci-

sion � (e.g., � = 10-3) in each step. An update is performed only if  
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After an update, the same clipping operation as in (16b) is performed 

min(max(0, ), )
i i i

C� � �� � �   (i = 1, ..., l) . (17b) 

It is the nonlinear clipping operation in Eq. (16b) and in Eq. (17b) that strictly 

equals the KA and the SMO without-bias-term algorithm in solving nonlinear 

classification problems. This fact sheds new light on both algorithms. This equal-

ity is not that obvious in the case of a ’classic’ SMO algorithm with bias term due 

to the heuristics involved in the selection of active points which should ensure the 

largest increase of the dual Lagrangian Ld during the iterative optimization steps. 

2.2 Iterative single data algorithm without bias term b in regression 

Similarly to the case of classification, for the models without bias term b, there is 

a strict equality between the KA and the SMO algorithm when positive definite 

kernels are used for nonlinear regression. 



2.2.1 Kernel AdaTron in regression 

The first extension of the Kernel AdaTron algorithm for regression is presented in 

(Veropoulos, 2001) as the following gradient ascent update rules for �i and �i
* 
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where yi is the measured value for the input xi, � is the prescribed insensitivity 

zone, and Ei = fi – yi stands for the difference between the regression function f at 

the point xi and the desired target value yi at this point. The calculation of the gra-

dient above does not take into account the geometric reality that no training data 

can be on both sides of the tube. In other words, it does not use the fact that either 

�i or �i
* or both will be nonzero. i.e., that �i�i

* = 0 must be fulfilled in each itera-

tion step. Below we derive the gradients of the dual Lagrangian Ld accounting for 

geometry. This new formulation of the KA algorithm strictly equals the SMO 

method and it is given as 
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For the �i
* multipliers, the value of the gradient is 
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The update value for �i is now 
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For the learning rate 1/ ( , )i i iK� � x x the gradient ascent learning KA is defined as, 
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Similarly, the update rule for �i
* is 
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Same as in the classification, �i and �i
* are clipped between zero and C, 
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i i i C� � �� � � , (i = 1, ..., l). (22b) 

2.2.2 SMO without bias term b in regression 

The first algorithm for the SMO without-bias-term in regression (together with a 

detailed analysis of the KKT conditions for checking the optimality of the solu-

tion) is derived in (Vogt, 2002). The following learning rules for the Lagrange 

multipliers �i and �i
* updates were proposed  
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The equality of Eq. (21a, b) and Eq. (23a, b) is obvious when the learning rate, as 

presented above in Eq. (21a, b), is chosen to be 1/ ( , )i i iK� � x x . Note that in 

both the classification and the regression, the optimal learning rate is not necessar-

ily equal for all training data pairs. For a Gaussian kernel, � = 1 is same for all 

data points, and for a complete nth order polynomial each data point has different 

learning rate 1/ ( , )i i iK� � x x . Similar to classification, a joint update of �i and 

�i
* is performed only if the KKT conditions are violated by at least � , i.e. if 
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After the changes, the same clipping operations as defined in Eq. (22) are per-

formed 

min(max(0, ), )
i i i

C� � �� � �      (i = 1, ..., l) , (25a) 

* * *min(max(0, ), )
i i i C� � �� � �    (i = 1, ..., l) . (25b) 

The KA learning as formulated in this section and the SMO algorithm without 

bias term for solving regression tasks are strictly equal in terms of both the 

number of iterations required and the final values of the Lagrange multipliers. The 

equality is strict despite the fact that the implementation is slightly different. In 

every iteration step, namely, the KA algorithm updates both weights �i and �i
* 

without any checking whether the KKT conditions are fulfilled or not, while the 

SMO performs an update according to Eq. (24).  

2.3 The coordinate ascent based learning for nonlinear classification and 

regression tasks 

When positive definite kernels are used, the learning problem for both tasks is 

same. In a vector-matrix notation, in a dual space, the learning is represented as: 

max    ( ) 0.5 T T

d
L � � � K f� � � �  (26) 

s.t .     0 � � i � C, (i = 1, ..., n), (27) 

where, in the classification n = l and the matrix K is an (l, l) symmetric positive 

definite matrix, while in regression n = 2l and K is a (2l, 2l) symmetric semiposi-

tive definite one. Note that the constraints Eq. (27) define a convex subspace over 



which the convex dual Lagrangian should be maximized. It is very well known 

that the vector � may be looked at as the iterative solution of a system of linear 

equations 

K f� �  (28) 

subject to the same constraints given by Eq. (27), namely 0 ��� i ��C, (i = 1, ..., n). 

Thus, it may seem natural to solve Eq. (28), subject to Eq. (27), by applying 

some of the well known and established techniques for solving a general linear 

system of equations. The size of training data set and the constraints Eq. (27) 

eliminate direct techniques. Hence, one has to resort to the iterative approaches in 

solving the problems above. There are three possible iterative avenues that can be 

followed. They are; the use of the Non-Negative Least Squares (NNLS) technique 

(Lawson and Hanson, 1974), application of the Non-Negative Conjugate Gradient 

(NNCG) method (Hestenes, 1980) and the implementation of the Gauss-Seidel 

(GS) i.e., the related Successive Over-Relaxation technique (SOR). The first two 

methods solve for the non-negative constraints only, but the bound � i <= C, for 

solving ’soft’ tasks can be readily incorporated into both the NNLS and NNCG. In 

the case of nonlinear regression, one can apply NNLS and NNCG by taking C = � 

and compensating (i.e. smoothing or ’softening’ the solution) by increasing the 

sensitivity zone �.  

Here we show how to extend the application of GS and SOR to both the 

nonlinear classification and to the nonlinear regression tasks. The Gauss-Seidel 

method solves Eq. (28) by using the ith equation to update the ith unknown doing it 

iteratively, i.e., starting in the kth step with the first equation to compute the 1

1

k� � , 

then the second equation is used to calculate the 1

2

k� �  by using new 1

1

k� �  and 

k

i
�   (i > 2)  and so on. The iterative learning takes the following form, 
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where we use the fact that the term within a second bracket (called the residual ri 

in mathematics’ references) is the ith element of the gradient of a dual Lagrangian 

Ld given in Eq. (26) at the k+1th iteration step. The Eq. (29) above shows that GS 

method is a coordinate gradient ascent procedure as well as the KA and the SMO 

are. The KA and SMO for positive definite kernels equal the GS! Note that the op-

timal learning rate used in both the KA algorithm and in the SMO 

without-bias-term approach is exactly equal to the coefficient 1/Kii in a GS 

method. Based on this equality, the convergence theorem for the KA, SMO and 

GS (i.e., SOR) in solving Eq. (26) subject to constraints Eq. (27) can be stated and 

proved as follows: 

 

Theorem: For SVMs with positive definite kernels, the iterative learning algo-

rithms KA i.e., SMO i.e., GS i.e., SOR, in solving nonlinear classification and re-

gression tasks Eq. (26) subject to constraints Eq. (27), converge starting from any 

initial choice of � 0. 

 

Proof: The proof is based on the very well known theorem of convergence of the 

GS method for symmetric positive definite matrices in solving Eq. (28) without 

constraints (Ostrowski, 1966). First note that for positive definite kernels, the ma-

trix K created by terms ( , )i j i jy y K x x  in the second sum in Eq. (9), and involved 

in solving classification problem, is also positive definite. In regression tasks K is 

a symmetric positive semidefinite (meaning still convex) matrix, which after a 

mild regularization given as (K � K + �I, � ~ 1e-12) becomes positive definite 

one. (Note that the proof in the case of regression does not need regularization at 

all, but there is no space here to go into these details). Hence, the learning without 



constraints Eq. (27) converges, starting from any initial point �0, and each point in 

an n-dimensional search space for multipliers �i is a viable starting point ensuring 

a convergence of the algorithm to the maximum of a dual Lagrangian Ld. This, 

naturally, includes all the (starting) points within, or on a boundary of, any convex 

subspace of a search space ensuring the convergence of the algorithm to the 

maximum of a dual Lagrangian Ld over the given subspace. The constraints im-

posed by Eq. (27) preventing variables �i to be negative or bigger than C, and im-

plemented by the clipping operators above, define such a convex subspace. Thus, 

each ’clipped’ multiplier value �i defines a new starting point of the algorithm 

guaranteeing the convergence to the maximum of Ld over the subspace defined by 

Eq. (27). For a convex constraining subspace such a constrained maximum is 

unique. Q.E.D. 

Due to the lack of the space we do not go into the discussion on the conver-

gence rate here and we leave it to some other occasion. It should be only men-

tioned that both KA and SMO (i.e. GS and SOR) for positive definite kernels have 

been successfully applied for many problems (see references given here, as well as 

many other, benchmarking the mentioned methods on various data sets). Finally, 

let us just mention that the standard extension of the GS method is the method of 

successive over-relaxation that can reduce the number of iterations required by 

proper choice of a relaxation parameter � significantly. The SOR method uses the 

following updating rule 
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and similarly to the KA, SMO, and GS its convergence is guaranteed. 

2.4 Discussions 

Both the KA and the SMO algorithms were recently developed and introduced as 

alternatives to solve quadratic programming problem while training support vector 



machines on huge data sets. It was shown that when using positive definite kernels 

the two algorithms are identical in their analytic form and numerical implementa-

tion. In addition, for positive definite kernels both algorithms are strictly identical 

with a classic iterative GS (optimal coordinate ascent) learning and its extension 

SOR. Until now, these facts were blurred mainly due to different pace in posing 

the learning problems and due to the ’heavy’ heuristics involved in the SMO im-

plementation that shadowed an insight into the possible identity of the methods. It 

is shown that in the so-called no-bias SVMs, both the KA and the SMO procedure 

are the coordinate ascent based methods and can be classified as ISDA. Hence, 

they are the inheritors of all good and bad ‘genes’ of a gradient approach and both 

algorithms have same performance. 

In the next section, the ISDAs with explicit bias term b will be presented. The 

motivations for incorporating bias term into the ISDAs are to improve the versatil-

ity and the performance of the algorithms. The ISDAs without bias term devel-

oped in this section can only deal with positive definite kernel, which may be a 

limitation in applications where positive semi-definite kernel such as a linear ker-

nel is more desirable. As it will be discussed shortly, ISDAs with explicit bias 

term b also seems to be faster in terms of training time. 

3.0 Iterative single data algorithms with an explicit bias term b 

Before presenting iterative algorithms with bias term b, we discuss some recent 

presentations of the bias b utilization. As mentioned previously, for positive defi-

nite kernels there is no need for bias b. However, one can use it and this means 

implementing a different kernel. In (Poggio et al, 2001) it was also shown that 

when using positive definite kernels, one can choose between two types of solu-

tions for both classification and regression. The first one uses the model without 

bias term (i.e.,
1

( ) ( , )
l

jj j
f Kv

�

� �x x x ), while the second SVM uses an explicit 



bias term b. For the second one
1

( ) ( , )
l

i ii
f v K b

�

� ��x x x , and it was shown that 

f(x) is a function resulting from a minimization of the functional shown below 
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where K* = K - a (for an appropriate constant a) and K is an original kernel func-

tion (more details can be found in (Poggio et al., 2001)). This means that by add-

ing a constant term to a positive definite kernel function K, one obtains the solu-

tion to the functional I[f] where K* is a conditionally positive definite kernel. 

Interestingly, similar type of model was also presented in (Mangasarian, Musicant, 

1999). However, their formulation is done for the classification problems only. 

They reformulated the optimization problem by adding the b2/2 term to the cost 

function || w ||2/2. This is equivalent to an addition of 1 to each element of the 

original kernel matrix K. As a result, they changed the original classification dual 

problem to the optimization of the following one 

1 , 1
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3.1 Iterative single data algorithms for SVMs classification with bias term b 

In the previous section, for the SVMs’ models when positive definite kernels are 

used without a bias term b, the learning algorithms for classification and regres-

sion (in a dual domain) were solved with box constraints only, originating from 

minimization of a primal Lagrangian in respect to the weights wi. However, there 

remains an open question - how to apply the proposed ISDA scheme for the SVMs 

that do use explicit bias term b. Such general nonlinear SVMs in classification and 

regression tasks are given below, 
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Where i� �� is the l-dimensional vector that maps n-dimensional input vector xi 

into the feature space. Note that i� �� could be infinite dimensional and we do 

not have necessarily to know either the i� �� or the weight vector w. (Note also 

that for a classification model in Eq. (33a), we usually take the sign of f(x) but this 

is of lesser importance now). For the SVMs’ models Eqs. (33), there are also the 

equality constraints originating from minimizing the primal objective function in 

respect to the bias b as given in Eq. (8) for classification and Eq. (13) for regres-

sion. The motivation for developing the ISDAs for the SVMs with an explicit bias 

term b originates from the fact that the use of an explicit bias b seems to lead to 

the SVMs with less support vectors. This fact can often be very useful for both the 

data (information) compression and the speed of learning. Below, we present an 

iterative learning algorithm for the classification SVMs Eq. (33a) with an explicit 

bias b, subjected to the equality constraints Eq. (8). (The same procedure is de-

veloped for the regression SVMs but due to the space constraints we do not go 

into these details here. However we give some relevant hints for the regression 

SVMs with bias b shortly).  

There are three major avenues (procedures, algorithms) possible in solving the 

dual problem Eq. (6), Eq. (7) and Eq. (8).  

The first one is the standard SVMs algorithm which imposes the equality con-

straints Eq. (8) during the optimization and in this way ensures that the solution 

never leaves a feasible region. In this case the last term in Eq. (6) vanishes. After 

the dual problem is solved, the bias term is calculated by using unbounded La-

grange multipliers 
i�  (Kecman 2001; Schölkopf and Smola 2002) as follows  
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Note that in a standard SMO iterative scheme the minimal number of training data 

points enforcing Eq. (8) and ensuring staying in a feasible region is two.  



Below, we show two more possible ways how the ISDA works for the SVMs 

containing an explicit bias term b too. In the first method, the cost function Eq. (1) 

is augmented with the term 0.5kb2 (where k �  0) and this step changes the pri-

mal Lagrangian Eq. (3) into the following one 
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Eq. (5) also changes as given below 
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After forming Eq. (35) as well as using Eqs. (36) and (4), one obtains the dual 

problem without an explicit bias b,  
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(37) 

Actually, the optimization of a dual Lagrangian is reformulated for the SVMs with 

a bias b by applying ‘tiny’ changes of 1/k only to the original matrix K as illus-

trated in Eq. (37). Hence, for the nonlinear classification problems ISDA stands 

for an iterative solving of the following linear system 

k lK 1� �  (38a) 

s.t. 0 � �i � C, i = 1, ..., l (38b) 

where Kk(xi, xj)  = yiyj(K(xi, xj) + 1/k), 1l is an l-dimensional vector containing 

ones and C is a penalty factor equal to infinity for a hard margin classifier. Note 

that during the updates of �i, the bias term b must not be used because it is implic-

itly incorporated within the Kk matrix. Only after the solution vector �  in Eq. 

(38) is found, the bias b should be calculated either by using unbounded Lagrange 

multipliers �i as given in Eq. (34), or by implementing the equality constraints 

from / 0pL b
 
 � and given in Eq. (36) as 
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Note, however, that all the Lagrange multipliers, meaning both bounded (clipped 

to C) and unbounded (smaller than C) must be used in Eq. (39). Both equations, 

Eq. (34) and Eq. (39), result in the same value for the bias b. Thus, using the 

SVMs with an explicit bias term b means that, in the ISDA proposed above, the 

original kernel is changed, i.e., another kernel function is used. This means that 

the alpha values will be different for each k chosen, and so will be the value for b. 

The final SVM as given in Eq. (33) is produced by original kernels. Namely, f(x) 

is obtained by adding the sum of the weighted original kernel values and corre-

sponding bias b. The approach of adding a small change to the kernel function can 

also be associated with a classic penalty function method in optimization as fol-

lows below. 

To illustrate the idea of the penalty function, let us consider the problem of 

maximizing a function f(x) subject to an equality constraint g(x) = 0. To solve this 

problem using classical penalty function method, the following quadratic penalty 

function is formulated, 

2

2

1max ( , ) ( ) ( )
2

P x f x g x� �� �  , (40) 

where �  is the penalty parameter and 
2

2
( )g x  is the square of the L2 norm of 

the function g(x). As the penalty parameter �  increases towards infinity, the size 

of the g(x) is pushed towards zero, hence the equality constraint g(x) = 0 is ful-

filled. Now, let us consider the standard SVMs’ dual problem, which is maximiz-

ing Eq. (9) subject to box constraints Eq. (10) and the equality constraint Eq. (11). 

By applying the classical penalty method Eq. (40) to the equality constraint Eq. 

(11), we can form the following quadratic penalty function. 
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The expression above is exactly equal to Eq. (37) when �  equals 1/k. Thus, the 

parameter 1/k in Eq. (37) for the first method of adding bias into the ISDAs can be 

regarded as a penalty parameter of enforcing equality constraint Eq. (11) in the 

original SVMs dual problem. Also, for a large value of 1/k, the solution will have 

a small L2 norm of Eq. (11). In other words, as k approaches zero a bias b con-

verges to the solution of the standard QP method that enforces the equality con-

straints. However, we do not use the ISDA with small parameter k values here, 

because the condition number of the matrix Kk increases as 1/k rises. Furthermore, 

the strict fulfilment of Eq. (11) may not be needed in obtaining a good SVM. In 

the next section, it will be shown that in classifying the MNIST data with Gaus-

sian kernels, the value k = 10 proved to be a very good one justifying all the rea-

sons for its introduction (fast learning, small number of support vectors and good 

generalization). 

The second method in implementing the ISDA for SVMs with the bias term 

b is to work with original cost function Eq. (1) and keep imposing the equality 

constraints during the iterations as suggested in (Veropoulos, 2001). The learning 

starts with b = 0 and after each epoch the bias b is updated by applying a secant 

method as follows 
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where 
1

l

i ii
y� �

�

�� represents the value of equality constraint after each epoch. 

In the case of the regression SVMs, Eq. (42) is used by implementing the corre-

sponding regression’s equality constraints, namely � �*

1

l

i ii
� � �

�

� �� . This is 



different from (Veropoulos, 2001) where an iterative update after each data pair is 

proposed. In our SVMs regression experiments such an updating led to an unsta-

ble learning. Also, in an addition to changing expression for , both the K matrix, 

which is now (2l, 2l) matrix, and the right hand side of Eq. (38a) which becomes 

(2l, 1) vector, should be changed too and formed as given in (Kecman, Vogt, 

Huang, 2003). 

3.2 Performance of the iterative single data algorithm and comparisons 

To measure the relative performance of different ISDAs, we ran all the algorithms 

with RBF Gaussian kernels on a MNIST dataset with 576-dimensional inputs 

(Dong et al., 2003), and compared the performance of our ISDAs with LIBSVM 

V2.4 (Chang et al., 2003) which is one of the fastest and the most popular SVM 

solvers at the moment based on the SMO type of an algorithm. The MNIST data-

set consists of 60,000 training and 10,000 test data pairs. To make sure that the 

comparison is based purely on the nature of the algorithm rather than on the dif-

ferences in implementation, our encoding of the algorithms are the same as 

LIBSVM’s ones in terms of caching strategy (LRU–Least Recent Used), data 

structure, heuristics for shrinking and stopping criterions. The only significant 

difference is that instead of two heuristic rules for selecting and updating two data 

points at each iteration step aiming at the maximal improvement of the dual objec-

tive function, our ISDA selects the worse KKT violator only and updates its i at 

each step.  

Also, in order to speed up the LIBSVM’s training process, we modified the 

original LIBSVM routine to perform faster by reducing the numbers of complete 

KKT checking without any deterioration of accuracy. All the routines were written 

and compiled in Visual C++ 6.0, and all simulations were run on a 2.4 GHz P4 

processor PC with 1.5 Gigabyte of memory under the operating system Windows 

XP Professional. The shape parameter 2 of an RBF Gaussian kernel and the pen-



alty factor C are set to be 0.3 and 10 (Dong, J.X. et al., 2003). The stopping crite-

rion � and the size of the cache used are 0.01 and 250 Megabytes. The simulation 

results of different ISDAs against both LIBSVM are presented in tables 1 and 2, 

and in a figure 1.  

The first and the second column of the tables show the performance of the 

original and modified LIBSVM respectively. The last three columns show the re-

sults for single data point learning algorithms with various values of constant 1/k 

added to the kernel matrix in (12a). For k = ���ISDA is equivalent to the SVMs 

without bias term, and for k = 1, it is the same as the classification formulation 

proposed in (Mangasarian and Musicant, 1999). 

Table 1 illustrates the running time for each algorithm. The ISDA with k = 10 

was the quickest and required the shortest average time (T10) to complete the 

training. The average time needed for the original LIBSVM is almost 2T10 and the 

average time for a modified version of LIBSVM is 10.3 % bigger than T10. This is 

contributed mostly to the simplicity of the ISDA. One may think that the im-

provement achieved is minor, but it is important to consider the fact that approxi-

mately more than 50% of the CPU time is spent on the final checking of the KKT 

conditions in all simulations. During the checking, the algorithm must calculate 

the output of the model at each datum in order to evaluate the KKT violations. 

This process is unavoidable if one wants to ensure the solution’s global conver-

gence, i.e. that all the data do satisfy the KKT conditions with precision � indeed. 

Therefore, the reduction of time spent on iterations is approximately double the 

figures shown. Note that the ISDA slows down for k < 10 here. This is a conse-

quence of the fact that with a decrease in k there is an increase of the condition 

number of a matrix Kk, which leads to more iterations in solving Eq. (38). At the 

same time, implementing the no-bias SVMs, i.e., working with k = ����	
��
	��
�

the learning down due to an increase in the number of support vectors needed 

when working without bias b. 



Table 1. Simulation time for different algorithms 

 
LIBSVM   

original 

LIBSVM 

Modified 

Iterative Single Data Algorithm (ISDA) 

k = 1        k = 10        k = � 

Class 
Time 

(sec) 
Time (sec) Time (sec) Time (sec) Time (sec) 

0 1606 885 800 794 1004 

1 740 465 490 491 855 

2 2377 1311 1398 1181 1296 

3 2321 1307 1318 1160 1513 

4 1997 1125 1206 1028 1235 

5 2311 1289 1295 1143 1328 

6 1474 818 808 754 1045 

7 2027 1156 2137 1026 1250 

8 2591 1499 1631 1321 1764 

9 2255 1266 1410 1185 1651 

Time, hr  5.5  3.1  3.5  2.8  3.6 

Time Increase +95.3% +10.3%  +23.9%  0 +28.3% 

 

Table 2 presents the numbers of support vectors selected. For the ISDA, the num-

bers reduce significantly when the explicit bias term b is included. One can com-

pare the numbers of SVs for the case without the bias b (k = ����
�������
�
����
�

an explicit bias b is used (cases with k = 1 and k = 10). Because identifying less 

support vectors speeds the overall training definitely up, the SVMs implementa-

tions with an explicit bias b are faster than the version without bias. 

In terms of a generalization, or a performance on a test data set, all algo-

rithms had very similar results and this demonstrates that the ISDAs produce mod-

els that are as good as the standard QP, i.e., SMO based, algorithms (see Fig. 1). 

 



Table 2. Number of support vectors for each algorithm 

 
LIBSVM 

original 

LIBSVM 

Modified 

Iterative Single Data Algorithm (ISDA) 

k = 1        k = 10        k = � 

Class #SV (BSV) # SV (BSV) #SV (BSV) # SV (BSV)  # SV (BSV) 

0 2172 (0) 2172 (0) 2162 (0) 2132 (0) 2682 (0) 

1 1440 (4) 1440 (4) 1429 (4) 1453 (4) 2373 (4) 

2 3055 (0) 3055 (0) 3047 (0) 3017 (0) 3327 (0) 

3 2902 (0) 2902 (0) 2888 (0) 2897 (0) 3723 (0) 

4 2641 (0) 2641 (0) 2623 (0) 2601 (0) 3096 (0) 

5 2900 (0) 2900 (0) 2884 (0) 2856 (0) 3275 (0) 

6 2055 (0) 2055 (0) 2042 (0) 2037 (0) 2761 (0)  

7 2651 (4) 2651 (4) 3315 (4) 2609 (4) 3139 (4) 

8 3222 (0) 3222 (0) 3267 (0) 3226 (0) 4224 (0) 

9 2702 (2) 2702 (2) 2733 (2) 2756 (2) 3914 (2) 

Av. # SVs 2574 2574 2639 2558 3151 

BSV = Bounded Support Vectors 

 

The percentages of the errors on the test data are shown in Fig 1. Notice the ex-

tremely low error percentages on the test data sets for all numerals. 

3.3 Discussions 

In final part of this chapter, we demonstrate the use, the calculation and the effect 

of incorporating an explicit bias term b in the SVMs trained with the ISDA. The 

simulation results show that models generated by ISDAs (either with or without 

the bias term b) are as good as the standard SMO based algorithms in terms of a 

generalization performance. Moreover, ISDAs with an appropriate k value are 

faster than the standard SMO algorithms on large scale classification problems (k 

= 10 worked particularly well in all our simulations using Gaussian RBF kernels).  



Fig. 1. The percentage of an error on the test data 
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This is due to both the simplicity of ISDAs and the decrease in the number of SVs 

chosen after an inclusion of an explicit bias b in the model. The simplicity of IS-

DAs is the consequence of the fact that the equality constraints Eq. (8) do not need 

to be fulfilled during the training stage. In this way, the second choice heuristics is 

avoided during the iterations. Thus, the ISDA is an extremely good tool for solv-

ing large scale SVMs problems containing huge training data sets because it is 

faster than, and it delivers ‘same’ generalization results as, the other standard QP 

(SMO) based algorithms. The fact that an introduction of an explicit bias b means 

solving the problem with different kernel suggests that it may be hard to tell in 

advance for what kind of previously unknown multivariable decision (regression) 

function the models with bias b may perform better, or may be more suitable, than 

the ones without it. As it is often the case, the real experimental results, their 

comparisons and the new theoretical developments should probably be able to tell 

one day. As for the single data based learning approach presented here, the future 

work will focus on the development of even faster training algorithms. 
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