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Abstract

A new approach to steady state modelling of vapour-compression liquid chillers is presented in this paper.

The model uses a generalised radial basis function (GRBF) neural network to predict chiller performance.

The GRBF chiller model is developed with the objective of requiring only those input parameters that are

readily known to the operating engineer, i.e. the chilled water outlet temperature from the evaporator, the

cooling water inlet temperature to the condenser, and the evaporator capacity. The GRBF chiller model

predicts relevant performance parameters of a chiller, especially the coefficient of performance. The neural

network is applied to two different chillers operating at the University of Auckland, New Zealand and the

agreement is found to be within ±5 per cent. It is inferred that neural networks, in particular the generalised

radial basis function, can be a promising tool for predicting the chiller’s performance for fault detection and

other diagnosis purposes.

Keywords: chiller; coefficient of performance; model; neural network; radial basis function; steady

state

1. Introduction

The best example of a neural network is the human brain. In fact it is the most complex and

powerful structure known. Artificial neural networks try to mimic this biological network in order

to learn the solution to a physical problem from a given set of examples. From this, an artificial

neural network should be able to learn and predict the performance of a system (be it a chiller).

Different models of vapour-compression liquid chillers have been developed in the past few

decades as reported by Browne and Bansal [1]. Browne and Bansal [2] developed a steady-state

model for centrifugal chillers, which included component models based on physical laws. The

model predicted the measured data to within ±10%. Gordon et al. [3] proposed a thermodynamic

model that relates the coefficient of performance (COP) to the cooling capacity. This model needed

experimental data to express unknown terms with adjustable parameters. The agreement of the
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model was found to be within a relative root-mean-square error of 0.4% for the COP but the

validation was done with the same data set that were used in determining the parameters.

The difficulty with the above two approaches is that they require geometrical parameters of the

system that are often not available to the operating engineers (due to reasons of confidentiality).

Therefore, another approach of modelling could involve predicting the performance of a chiller

without using any physical or thermodynamic models. This paper presents a new kind of steady

state model for liquid chillers that considers the system as a black box without requiring

information about the internal behaviour. The model is an application of an artificial neural

network, and in particular of the generalised radial basis function (GRBF) network. This is a

promising field of research and has become increasingly popular in the last few years as neural

networks can solve problems much faster than the other approaches.

Numerous applications [4-9] of neural networks related to refrigeration systems can be found in the

open literature. However, only a few of them are somehow applicable to chillers and none of them

were used for predicting the performance of liquid chillers. In nearly all of the neural network

applications in refrigeration systems, multilayer perceptron networks were used and these networks

modelled the chiller systems quite well [10-13]. However, only one application of a radial basis

function network was found in the open literature for chillers where Haves et al. [14] successfully

detected fouling and leakage faults in the cooling coil of an air-handling unit. The Gaussian

functions were positioned on a grid of the input space and the standard deviations were selected to

be equal to the distance between adjoining centres. No further optimisation of the centre location or

standard deviation was implemented and no test method was described.

2. Neural network

Many neural networks have been developed, but the most popular neural networks are known

respectively as the multilayer perceptron (MLP) and the generalised radial basis function (GRBF)

network. These networks presently form the basis for the majority of practical applications [15],

and are therefore the most likely candidates to be applied to chillers for modelling their

performance. In this paper, the GRBF network is chosen since it provides several advantages over

the MLP network for this application, including [15-16]:

• fast and efficient training methods

• computationally not as intensive

• better approximation properties
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The diagram shown in Figure 1 can represent the GRBF network. For most applications the basis

functions are chosen to be Gaussian. These Gaussian basis functions are situated between the input

and output layer in the hidden layer. The architecture of a generalised radial basis function network

has c inputs x1,...xc and d outputs y1,...yd. A total number of ce Gaussian functions Gk ( ce!1=k )

compute a localised function of the input vector. The lines connecting the inputs to the Gaussian

function represent (a) the elements of the vector µµµµk, which describes the location of the centre (in

input space) and (b) the elements of the vector σσσσk, which describes the standard deviation of the

Gaussian function (in input space). The lines connecting the Gaussian functions to the outputs

represent the weights w of the neural network which are comparable to the parameters in the case of

curve fitting with simple polynomials. The outputs are then given as a linear combination of the

values of the Gaussian functions (see Eq. (3)).

In case of the general N-dimensional case the kth Gaussian function is given as
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The basis function parameters ie. the location of the centres and their number, and the standard

deviation, are processed in the hidden layer training. The output is given as a linear superposition

of basis functions, in the form

kkGy wxx
ce

⋅= ∑
= 1k

)()( . (3)

The weights in the vector w are subsequently determined in the output layer training after the basis

function parameters are chosen with use of the sum-of-least squares error function. This error

function can generally be written in matrix notation as follows:

( )2

2

1
E TwG −⋅= T (4)
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where matrix G represents all basis functions Gk(x), vector w all weights wk, and the matrix T

represents all target values (e.g. the measured data patterns). The error function is minimised when

the derivative equals zero which has a unique solution for the weights given by

( )( )  TGT GGGw 11 −− == TTT (5)

where G-1 is the pseudo-inverse of the matrix G.

3. Description of the chillers

The model is applied to two different hermetic vapour-compression liquid chillers, namely a single-

circuited single-screw (Chiller A) and a twin-circuited twin-screw (Chiller B). These chillers are

part of a recently (1998) commissioned commercial chilling system for one of the complexes at the

University of Auckland, New Zealand. The complex consists of three buildings with a total cooling

area of approximately 30,000 m2. The cooling capacity in each of the chillers is mainly controlled

by the chilled water outlet temperature. Typical design conditions for the water temperatures are

6°C for the chilled water outlet temperature and 29°C for the cooling water inlet temperature. Table

1 summarises the general details of the chillers.

4. Experimental Data

Experimental data were collected on both the chillers for the mass flow rates and the inlet and

outlet temperatures respectively of chilled and cooling water, and for the electrical work input to

the compressor. The cooling water mass flow rate changed under different combined chiller

operations. The chilled water mass flow rate was found to be nearly constant (±2 per cent), whereas

for each chiller operation, an averaged cooling water mass flow rate was assumed. The cooling

capacity of the chiller was evaluated using

)( out
chw

in
chwpchwe TTcmQ −⋅⋅= ûû . (6)

The coefficient of performance was calculated using

WQCOP e
ûû= . (7)

Figures 2 and 3 show that on January 20, 1999, the chillers were operating in highly dynamic

mode, particularly the cooling water temperature. To extract the steady-state data from these

measurements, only those operating conditions that varied by less than 2 per cent for Chiller A and

less than 5 per cent for Chiller B over a 15 minute time period, were used. The higher percentage

for Chiller B was necessary to obtain an adequate number of inputs for the model. Representative

parts of the 500 extracted steady-state data patterns for Chiller A and of the 380 for Chiller B are

respectively given in Tables 2 and 3. The COP curve obtained from the measurements (measured
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COP) for Chiller A versus the cooling capacity (part load fraction) follows a linear trend with

higher COPs around the full load. The COP curve for Chiller B, however, follows five linear trends

as it has two compressors with three operation stages each. The dependence of the COP to the

compressor work results in a relatively high but constant COP under all operating conditions. The

lowest measured COP under steady-state conditions was as low as 1.6 for Chiller A, while between

3 and 4 for Chiller B [17].

5. Model input and output parameters

The GRBF chiller model is developed with the objective of requiring only those input parameters

that are easily available to the operating engineers. These include the cooling capacity (see Eq. (6)),

the chilled water outlet, and the cooling water inlet temperatures (3-dimensional input space). The

values of the model input parameters are restricted to the range of the values used for training as

given in Table 4. Input values beyond the training range can not be modelled with a sufficient

accuracy with a GRBF network. The model predicts all relevant performance parameters. These are

the chilled water inlet and cooling water outlet temperatures, as well as the coefficient of

performance (see Eq. (7)), and the compressor work input (4-dimensional output space).

6. GRBF chiller model

The GRBF chiller model is implemented under MATLAB as this performs matrix operations and

offers simple programming features. The GRBF chiller model is separated in three distinctive parts:

1. data pre-processing

2. hidden layer training

3. output layer training and neural network testing

This is performed for 450 of the 500 measured data patterns for Chiller A and for 342 of the 380

measured data patterns for Chiller C. The remaining 50 and 38 data patterns respectively for Chiller

A and B are only used for the final validation of the model (see Section 7). The flowchart of the

general structure of the GRBF chiller model is explained in Figure 4.

6.1 Data pre-processing

Initially data pre-processing is employed to randomly redefine the structure of the measured data ie.

it is used just once with the whole data set before the actual neural network (GRBFchil) is started.
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6.2 Hidden layer training

The hidden layer training is separated into two steps, namely (a) the optimisation of the Gaussian

functions centres and (b) the optimisation of the standard deviations. For both steps various

optimisation methods exist, in this work however only the most popular ones are used.

(a) In optimising the centres of the Gaussian functions, firstly it is necessary to determine the

total number of the Gaussian functions (ce) and secondly the location of the centres in the input

space. The number of Gaussian functions is determined by a supervised training process and has to

be initially given as an user input. The fastest approach to choose the location of the centres is to set

them equal to some subset of the data patterns from the training set. In this case, the first ce data

patterns were chosen as centres. This approach to the choice of the centres is very fast, and allows

the GRBF chiller model to be set up very quickly. Another very popular method but

computationally intensive approach used in this application is the K-means algorithm. This

algorithm associates each Gaussian function with a group of input data patterns, such that the centre

of the Gaussian function is given by the mean of the data patterns in the group. This is achieved by

an iterative procedure. In this application, the K-means algorithm is an optional optimisation

method of the initially located Gaussian functions.

 (b) The standard deviations are obtained once the locations of the Gaussian functions are

determined. One of the most common ways to determine the standard deviations is used in this

application. This is to make them equal to the average distance between the Gaussian functions

themselves. The standard deviation determines the degree of overlapping of the Gaussian functions.

This overlapping is the reason that only a few Gaussian functions can represent the whole input

space. Hence, the degree of overlapping has an influence on the performance of the GRBF chiller

model. It can be changed by multiplying the standard deviations with the fine-tune parameter kks.

This parameter has to be determined by supervising the training process, which is automated in the

model.

6.3 Output layer training and neural network testing

The optimum number of Gaussian functions ce and the optimum standard deviation fine-tune

parameter kks are determined by dividing the available set of data (in this case 450 and 342 data

patterns respectively for Chiller A and B) randomly into a training and a testing set. For the GRBF

chiller model, the cross-validation method is used. The set of data patterns is divided randomly into

S equal sections, where S is chosen to be 10. Each considered network, ie. defined by different

values for ce and kks, is then trained (ie. estimation of the weights) on S-1 of the sections by
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programming  Eqs. (1) and (5) in the MATLAB-file GRBFfunc. The ability of the network to make

predictions for new data is tested on the remaining section using Eq. (3) and by computing an error

based on the root-mean-square error function. This is repeated for all S possible choices and the

results of the error function are then averaged. This overall mean testing error can then be used to

compare the performance of a GRBF chiller model by changing the Gaussian function parameters.

Hence, it is necessary to repeat the whole hidden and output layer training as well as the neural

network testing until a good performance (ie. a low value of the overall mean testing error) is

achieved with optimised parameters ce and kks.

The final GRBF chiller model configurations for Chiller A and B are given in Table 5. The main

difference in the parameters is that K-means algorithm is not needed to optimise the location of the

Gaussian functions for Chiller A, however, it improves the performance of Chiller B. That may be

due to the different chiller design and the corresponding COP curves. Chiller A is single-circuited

and exhibits a nearly linear COP curve over the whole cooling capacity range while Chiller B is

twin-circuited and shows an unsteady COP curve (five nearly linear curves) over the cooling

capacity. Table 5 also shows that ce and kks are higher for Chiller A than for Chiller B. One reason

may be that the use of the K-means algorithm leads to a better distribution of the Gaussian

functions in the input space. Therefore, the less Gaussian functions and a decreased degree of

overlapping are necessary to represent the data.

7. Results and discussion

The GRBF chiller models were validated with 50 data patterns for Chiller A and 38 data patterns

for Chiller B. These data patterns were not used for training or testing the networks, and, hence, are

totally independent. Figures 5 to 12 show comparisons between the experimental  and the neural

network predicted values (of the independent data patterns). Table 6 shows some statistical results

for the GRBF chiller model. The statistical methods employed are (see Appendix) the root-mean-

square error (rms), the coefficient of variation (cov), and the absolute fraction of variance (r²).

Figures 5 and 6 compare the predicted and measured chilled water inlet and cooling water outlet

temperatures, respectively for Chiller A and B. It can be seen that the GRBF chiller model predicts

them to an accuracy within ±0.5 per cent. The root-mean-square error for the chilled water inlet

temperatures respectively for Chiller A and B is 0.02 K and 0.01 K and for the cooling water outlet

temperatures respectively 0.28 K and 0.57 K. This is about the accuracy of the temperature

measurements of ±0.25 K. However, the predicted cooling water outlet temperature shows more
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scatter than the chilled water temperature for both the chillers. This is in line with the cooling water

temperatures having higher fluctuations (see Figures 2 and 3).

Figures 7 and 8 highlight the predicted and measured compressor work for the chillers. Nearly all

(94 per cent for Chiller A and 87 per cent for Chiller B) of the predicted values are within ±5 per

cent of the experimental values. The coefficient of variation is less than 1.7 per cent for Chiller A

and about 2.7 per cent for Chiller B. This is about the accuracy of the clamp-on current meters of

±2 per cent. The root-mean-square error for work input to both the chillers is about 2 kW, which is

quite low compared with the maximum compressor work input of 138 kW for Chiller A and 72 kW

for Chiller B. It does, however, appear that at lower loads the GRBF chiller model tends to

overestimate the compressor work slightly. This may be due to the reason that most of the data

patterns used for training were in the high load region of operation.

Figures 9 and 10 compare the predicted COP with the measured COP. Nearly all (94 per cent for

Chiller A and 84 per cent for Chiller B) of the predicted values agree to within ±5 per cent. The

coefficient of variation is less than 1.5 per cent for Chiller A and 3.9 per cent for Chiller B and

predicts the COP accurately. The scatter in the figures under part load operation is due to the scatter

in the measured data used for training.

Figures 11 and 12 show the trends for the measured and predicted COPs versus cooling capacity

part load fraction respectively for Chiller A and B. Figure 11 highlights that the COP prediction for

Chiller A agrees well under both the high load and part-load operation. It may be viewed from

Figure 12 why the accuracy of the GRBF chiller model for Chiller B is not as accurate as for

Chiller A. The main reason for the discrepancies between the predicted and the measured values is

the scatter in the measured data (see Tables 2 and 3) where on occasions, a lower chilled water

outlet temperature has a higher cooling capacity and compressor work input. This is probably due

to the variations in the water mass flow rates through both the evaporator, where a constant average

flow rate was used to calculated the evaporator capacity, and the condenser for which constant

mass flow rates under different combined chiller operations were assumed. It is also possible that

the scatter in the measured data may be due to highly unsteady cooling water inlet temperatures.

8. Conclusions

In this paper, a new approach to modelling vapour-compression liquid chillers has been presented.

A generalised radial basis function network has been successfully applied to two different chillers.
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The neural network predicted the compressor work input and the COP to within ±5 per cent for

both the single-circuited Chiller A and the more complex twin-circuited Chiller B. It may be

inferred that neural networks and especially the generalised radial basis function network can be

applied to vapour-compression liquid chillers and be used to accurately model their performance.

The developed GRBF chiller model can easily be applied to other chillers given a sufficient amount

of measured steady-state data. Future studies will concentrate on training the GRBF Chiller model

in-situ during the measurements and its application to predict the performance for fault detection

and other diagnosis purposes.
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Appendix

The statistical methods employed are:

• rms : root-mean-square error defined as
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• cov : coefficient of variation in per cent defined as

100
rms

cov ⋅=
meat

(A2)

• r 2 : absolute fraction of variance (value of 1 denotes perfect prediction) defined as
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where n is the number of data patterns in the independent data set (respectively for Chiller A and B,

nA=50 and nB=38), ypre,m indicates the predicted, tmea,m is the measured value of one data point m,

and meat  is the mean value of all measured data points.
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Nomenclature

a) Latin Letters

c number of neural network inputs

ce total number of Gaussian functions

cp specific heat at constant pressure [kJ/kgK]

COP coefficient of performance

d number of neural network outputs

E error

G Gaussian function

kks standard deviation fine-tune parameter

mû mass flow rate [kg/s]

n number of independent data patterns

N number of neural network input dimensions

eQû cooling capacity [kW]

S number of sections for cross-validation method

t target neural network output

T temperature  [K]

Wû compressor work input  [kW]

w neural network weight

x neural network input

y calculated neural network output

b) Greek Letters

µ Gaussian functions centre location

σ Gaussian functions standard deviation

c) Subscripts

chw chilled water

cw cooling water

in inlet

mea measured

out outlet

pre predicted
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Tables

Table 1: General details of the chillers

Chiller Compressor Design Refrigerant Cooling Capacity
[kW]

A sigle-screw single-circuited R-22 650
B twin-screw twin-circuited R-134a 300

Table 2: Steady-state data for Chiller A

Cooling capacity Compressor work input Coefficient of performance 
[K] [kW] [kW] (COP)

280.1 174.1 81.6 2.13
280.7 199.0 85.7 2.27
280.4 238.7 89.8 2.64
280.0 284.8 99.2 2.87
279.9 363.0 117.0 3.10
280.2 468.2 131.2 3.57
279.9 483.5 129.0 3.75
281.1 512.0 132.2 3.87
284.3 534.5 132.9 4.02
283.9 555.6 132.9 4.18
284.5 570.2 132.4 4.31
286.2 661.4 133.3 4.96
284.7 669.2 132.5 5.05
286.2 673.4 133.3 5.05
285.4 676.3 132.6 5.10
285.1 678.2 132.3 5.13

out
chwT
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Table 3: Steady-state data for Chiller B

Cooling capacity Compressor work input Coefficient of performance 
[K] [kW] [kW] (COP)

279.5 93.5 24.5 3.82
279.6 94.3 25.0 3.78
279.7 104.4 32.4 3.22
279.6 106.7 34.0 3.14
279.2 147.1 42.5 3.46
279.0 151.2 42.1 3.60
279.3 152.6 42.0 3.64
279.1 181.1 42.7 4.24
279.7 209.6 61.7 3.40
279.6 210.8 60.8 3.47
280.1 214.0 61.3 3.49
279.6 259.8 68.3 3.81
280.7 267.9 70.7 3.79
282.1 269.9 71.2 3.79
282.4 270.2 72.9 3.71
283.2 276.9 73.1 3.79

out
chwT

Table 4: Range of the GRBF chiller model input parameters for Chiller A and B

input parameters Chiller A Chiller B
cooling capacity [kW] 156.4 - 687.7 81.6 - 298.6
chilled water outlet temp. [K] 279.7 - 286.3 278.8 - 283.8
cooling water inlet temp. [K] 299.0 - 305.0 298.5 - 301.9

Table 5: Configuration of the GRBF chiller model parameters for Chiller A and B

Chiller A Chiller B
ce (centers) 23 17
km (K -means) 0 1
kks (standard deviation) 9,0 0,5

Table 6: Statistical results for the GRBF chiller models for Chiller A and B

rms cov r2
rms cov r2

COP 0.05 1.44% 0.9998 0.14 3.90% 0.9985

2.03 kW 1.67% 0.9997 1.56 kW 2.27% 0.9993

0.28 K 0.09% 1.0000 0.57 K 0.19% 1.0000

0.02 K 0.01% 1.0000 0.01 K 0.00% 1.0000

Chiller A Chiller B

Wû
out

cwT
in

chwT
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Figures

Figure 1: Architecture of a high dimensional in- and output GRBF network

Figure 2: Operating characteristic on January 20, 1999 for Chiller A
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Figure 2: Operating characteristic on January 20, 1999 for Chiller A
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Figure 3: Operating characteristic on January 20, 1999 for Chiller B

0

50

100

150

200

250

300

350

00 01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 19 20 21 22 23

time on January 20, 1999 [hrs]

po
w

er
 [k

W
]

0

5

10

15

20

25

30

35

te
m

pe
ra

tu
re

 [°
C

]

compressor work

cooling capacity
chilled water outlet

cooling water inlet



327

Figure 4: Flowchart of the general structure of the GRBF chiller model
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Figure 5: Comparison of predicted and measured water temperatures for Chiller A

Figure 6: Comparison of predicted and measured water temperatures for Chiller B
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Figure 7: Comparison of predicted and measured compressor work for Chiller A

Figure 8: Comparison of predicted and measured compressor work for Chiller B
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Figure 9: Comparison of predicted and measured COP for Chiller A

Figure 10: Comparison of predicted and measured COP for Chiller B

+ 5 %

- 5 %

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5

measured COP

pr
ed

ic
te

d 
C

O
P

+ 5 %

- 5 %

3,0

3,2

3,4

3,6

3,8

4,0

4,2

4,4

3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4

measured COP

pr
ed

ic
te

d 
C

O
P



331

Figure 11: Comparison of predicted and measured COP over cooling capacity part load

fraction for Chiller A

Figure 12: Comparison of predicted and measured COP over cooling capacity part load

fraction for Chiller B
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