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Abstract: This paper presents a new neural network (NN) based Adaptive Backthrough Control
(ABC) scheme for both linear and nonlinear dynamic plants. Unlike other feedforward NN based
control schemes the ABC proposed here is comprised of one neural network only that simulta-
neously acts as both - plant model and the controller (plant inverse). For linear noiseless plants,
the resulting feedforward controller, for equal orders of the plant and plant model, is a perfect
adaptive poles-zeros canceller. In the case of monotonic nonlinear dynamic system, the proposed
ABC control represents the nonlinear predictive controller. The ABC scheme is based on the
discrete nonlinear (NARMAX) dynamic model. For monotonic nonlinearities, the desired con-
trol signal results from the nonlinear optimization procedure with guaranteed convex search
function and consequently with a unique solution. Copyright 1999 IFAC
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1. INTRODUCTION AND BASIC CONTROL
STRUCTURE

This paper focuses on the NN based adaptive control.
Due to the ‘equality’ of NN and fuzzy logic (FL)
models (see Kecman and Pfeiffer, 1994) the same
approach can be applied to the adaptive FL based
control schemes. In particular, after presenting the
basic guiding ideas of the NN based control ap-
proaches, we will introduce the Adaptive Back-
through Control (ABC) scheme as one of the most
serious candidate for the future control of the large
class of nonlinear, partially known and time-varying
systems. See, [Kecman, 1997; Kecman and Rommel,
1997; Rommel, 1997, Salman and Kecman, 1998].

Recently, the area of NN control has been exhaus-
tively investigated and there is a large number of
different NN based control methods. A systematic
classification of the very different NN control struc-
tures is a formidable task indeed [Agarwal, 1997].

So-called ‘standard’ or ‘classic’ NN based control
uses two neural networks. This control structure

comprises NN2 which represents the (approximate)
model of the plant, and NN1 that functions as a con-
troller. The latter one represents (approximate, again)
inverse of NN2. Note that NN1 is an ‘inverse’ of the
plant model and not of the plant.

Here proposed Adaptive Backthrough Control (ABC),
is in the spirit of the basic results and approaches from
[Psaltis et al, 1988; Saerens and Soquet, 1991; Garcia
and Morari, 1982; Jordan, 1993; Hunt and Sbarbaro,
1991; Narendra and Parthasarathy, 1990 and Widrow
and Walach, 1996]. While being ‘similar’ in spirit,
there are few important distinctive features that differ
the ABC approach from all the other standard NN
based control methods.

First of all, the ABC uses one neural network only
[Kecman, 1997, Salman and Kecman, 1998]. Second
principal feature of the ABC is that, unlike the other
approaches, it doesn’t use standard training errors as
the learning signals for modeling the plant and adapt-
ing the controller. (Note that at the ABC approach, the
single NN is both the plant model and the controller).
Rather, the true desired value yd (signal that should be
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tracked, reference signal) is used for the training of the
NN. In this way, the desired but unknown control sig-
nal ud, results from the backward transformation of the
yd  through the NN. The origin of the label for this
approach as a backthrough method, lies in this back-
ward step for the calculation of ud. In this way the
ABC basically represents a younger (and it seems
more direct and powerful) relative of the ‘distal
teacher’ idea from [Jordan, 1993] or of the [Saerens
and Soquet, 1990], as well as of [Saerens, Renders,
and Bersini, 1996] approach.

Similarly to the adaptive inverse control (AIC) de-
vised by Widrow, ABC control scheme proposed
here is effective as long as the plant is stable. It
solves the problems of tracking and disturbance re-
jection for any stable plant. The same will be true in
the case of unstable plants as long as the unstable
plant is stabilized by some classic control method
first. The reference block presented in Fig 1 is not
required unless some control of the control signal
variable u is needed. All results below are obtained
by using Gref (s) = 1.

Figure 1 Neural (or fuzzy) network based Adaptive Back-
through Control (ABC) scheme with one network which
simultaneously acts as the plant model and as a con-
troller (inverse plant model).

The first papers on the NN based ABC system had
described the ABC structure comprised of the two NN
[Kecman and Rommel, 1997] and [Rommel, 1997].
This structure was ‘inherited’ from the previously
mentioned approaches and it is directly related to the
classic EBP learning. The task of the first network
NN1 was to act as a controller i.e., to learn the inverse
dynamics of the controlled plant. The second NN, NN2

was used as the plant model (needed as the part of the
EBP procedure for learning of the NN1’s weights).
Being properly trained and after receiving the desired
plant output signal yd, NN1 was able to produce the
best control signal ud which would drive the plant to
output the desired yd. However, the ABC learning is
different from the EBP algorithm. Note that in the
ABC algorithm by using the desired trajectory yd , the
best control signal ud can be calculated directly by the
backward step through the single NN. Thus, having
the two NN in the control structure, there is a great
deal of a redundancy and it seems as though both the

very structure of the whole control system and the
learning can be halved. Having the signal ud calcu-
lated, the controller network NN1 is no longer needed.
The ABC structure with only one NN, which simulta-
neously acts as the plant model, and as a controller
(inverse plant model) is shown in Fig 1.

The standard control task and the basic problem in
controlling an unknown dynamic plant is to find the
proper, or desired, control (actuation) value ud as an
input to the plant which should ensure that,

y t y t td( ) ( ),= ∀                                             (1)

where the subscript d stands for desired. The variables
y(t) and yd(t) denote the actual plant output and desired
(reference) plant output respectively. A controller that
could produce this value ud would be the best control-
ler and the output of the plant would exactly follow the
desired input yd. In linear control, (1) will be ensured
when,

G s G sci p( ) ( )= −1 .                                         (2)

Hence, the ideal controller transfer function Gci(s)
should be the inverse of the plant transfer function
Gp(s). Because of many practical constraints, this is an
idealized control structure [Kecman, 1988]. However,
we can try to get as close as possible to this ideal con-
troller solution (Gci(s)). The ABC approach which is
presented in this section, can achieve a great deal
(sometimes even nearly all) of this ideal controller.
The block diagram of the ideal control of any nonlin-
ear system is given in Fig 2.

yd y
f -1(u, y) f(u, y)

ud

Figure 2 The ideal (feedforward) control structure for any
plant.

f(u, y) represented in Fig 2 stands for any nonlinear
mapping between an input u(t) and an output y(t). In a
general case of a dynamic system f(u, y) represents a
system of nonlinear differential equations. Here we
will primarily be concerned with discrete-time sys-
tems, and the model of the plant in the discrete-time
domain will be in the form of nonlinear discrete equa-
tion y(k+1) = f(u(k), y(k)). Now, the basic problem is
how to learn, or obtain, the inverse model of the un-
known dynamic plant by using NN?

The wide application of NN in control is based on the
universal approximation capacity of neural networks
and fuzzy models. Thus a learning (identification, ad-
aptation, training) of the plant and inverse plant dy-
namics represents both the basic mathematical tool and
the basic problem to be solved.
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So far as the representation of dynamic system is con-
cerned, we use a so-called NARMAX model here. In
the extensive literature on modeling dynamic plants, it
was proved that under some mild assumptions any
nonlinear, discrete and time invariant system can al-
ways be represented by the following NARMAX
model,

y k f y k y k n u( k u( k m( ) { ( ), , ( ); ), , )}+ = − −1 " " ,
                                                   (3)

where yk and uk are the input and output signals at in-
stant k, and yk-i and uk-j (i = 1, ..., n and j = 1, ... ,m)
represent the past values of these signals. Typically
one can work with n = m. (3) is a simplified determi-
nistic version of the NARMAX model (there is no
noise terms in it), and is valid for dynamic systems
with K outputs and L inputs. For K = L = 1 we obtain
the so-called SISO (single-input single-output) system
which is studied here.

In reality, the nonlinear function f from (3) is very
complex and generally unknown. The whole idea in
the application of NN is to try to approximate f by
using some known and simple functions which, in the
case of the application of NN and FLM, are their acti-
vation and membership functions respectively. Both
the identification part and the control part in NN can
be given a graphical representation (Fig 3). Note that
the two different identification schemes are presented
in Fig 3 - series-parallel and parallel. (The names are
due [Landau, 1979]). The identification can be per-
formed by using either the

Series-Parallel scheme
y k f y k y k n u k u k n( ) { ( ), , ( ); ( ), , ( )}+ = − −1 " "      (4)

or the Parallel one
y k y k y k n u k u k n( ) { �( ), , �( ); ( ), , ( )}+ = − −1 " " .      (5)

Figure 3 Identification and control scheme using NN.

It is hard to say which identification scheme is better.
Narendra and Annaswamy (1989) showed (for linear
systems) the series-parallel method to be globally sta-

ble. The parallel method has the advantage of avoiding
noises existing in real plant output signals. On the
other hand series-parallel scheme uses actual (meaning
correct) plant outputs and this generally enforces iden-
tification. There are also two controller schemes pre-
sented in Fig 3: a series-parallel and a series scheme.
The detailed analysis of the performance of both
schemes, in the case of the linear plant only, is given in
[Salman and Kecman, 1998], where it is shown that
under some mild assumptions on the identification
part, the series-parallel control scheme is superior in
the linear case (see the Appendix). The determination
of a good inverse model can be done by using many
different and, more or less suitable, approaches. We
will only mention the three most popular ones as pre-
sented in [Psaltis et al, 1988]. In their paper they intro-
duced and discussed - a general, indirect and special-
ized learning architecture for the NN based control of
the stable nonlinear plants. (Independently, the same
approach as the general architecture was developed in
[Jordan and Rumelhart, 1992] and it was named as a
direct inverse modeling. This is basically an off-line
procedure and for nonlinear plants it will usually pre-
cede the on-line phase. (If the plant is unstable a stabi-
lization with a feedback loop is necessary. That can be
done with any standard control algorithm). Detailed
description of these approaches can be found in
[Kecman, 1997]. Here we will present only the basic
ideas and the performance of the ABC scheme.

2. LEARNING IN THE ABC STRUCTURES
WHICH COMPRISES ONE NN ONLY

Fig 1 shows the ABC scheme having one NN which
acts as both the plant model (emulator) and the con-
troller of the plant. The most important part of the
learning is the calculation of the desired control signal
ud . This calculation is done in an on-line mode. In the
case that the plant is nonlinear the standard approach is
that this on-line part is preceded by the off-line learn-
ing of the plant model. The advantage is that the off-
line learning will produce a better set of initial weights
for the on-line operation. In the case of nonlinear
plants pretraining of NN is essential. For the linear
plant this pretraining is not important. Sometimes it
may be useful to introduce a reference model, too.
This step is not crucial for the ABC approach but an
important result could be that with a reference model a
tuning of the control effort is possible.

The basic idea of the ABC is to design a plant emula-
tor which simultaneously acts as the inverse of the
plant (or, as an adaptive controller). In this way, the
problem of finding the ‘best’ control signal ud will be
solved. In general, this value ud is not available. By
using the ABC approach we can find this desired con-
trol values ud that will usually be very close to the ideal
ones. For the ABC of linear systems, the calculation
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of ud is straightforward. The forward model (NN in
Figs 1 and 3) is given as,

�( ) , ,y k w xi i
i

N
T+ = ⋅ = ⋅

=
∑1 2 2

1
2 2w x                           (6)

where N = 2n, n is the order of the model and x2 is an
input vector to the NN comprised of present and pre-
vious values of u and y. For the calculation of the de-
sired value �ud  this equation should and can be rear-

ranged in respect to the input of the neural network
NN,

                                                       (7)

Therefore, when applied to the control of linear sys-
tems, the calculation of the control signal ud by using
(7) is similar to the predictive (deadbeat) controller
approach. Note that in the calculation of the best esti-

mates of desired control signal �ud (k) to the plant and

to the NN, the desired output values of the system
( ) ( ) ( )y k y k y k nd d d+ −1 , , ,  " are used. This is so-

called series model presented in Fig 3. It is interesting
to note that instead of using the present and previous
desired values, one can use the present and previous
actual plant outputs ( ) ( )y k y k n, ,"  − . This is so-

called series-parallel model presented in Fig 3 which
is in the case of linear plant superior to the series con-
trol model.

In the case of the nonlinear system control, the cal-
culation of the desired control signal ud which corre-
sponds to the desired output from the plant yd , is much
more involved task. For the monotonic nonlinearities
(i.e., for the one-to-one inverse mapping of the plant
outputs y into its inputs u) control signal ud can be cal-
culated by an iterative algorithm which guarantees
finding of proper ud for any desired yd. This is the cru-
cial result in the proposed ABC algorithm. All the
details of the numerical part of the backthrough cal-
culation of ud can be found in [Kecman, 1997].

3. SIMULATIONAL RESULTS

Example 1: Nonlinear monotonic 1st order dynamic
plant adapted from [Narendra and Parthasarathy, 1990]
should be controlled by the ABC scheme comprised of
the one network only. The plant equation is given be-
low,

y k
y k

y k
u k( )

( )

( )
( )= −

+ −
+ −1

1 1
1

2
3 .

The neural network which simultaneously acts as a
plant model and as its controller is comprised of 39

neurons in hidden layer. Basis functions in all HL
neurons are the two-dimensional Gaussians with the
same covariance matrix Σ = diag(0.2750, 0.0833),
and with positions determined by an orthogonal least
squares selection procedure [Orr, 1996]. NN was
pretrained by using 1000 data pairs. Training input
signal was a uniformly distributed random signal.
(Note that the ABC control structure is much simpler
than the one in [Narendra and Parthasarathy, 1990].
They used two NN for the identification and one as a
controller. Each network had 200 neurons. Besides,
in the off-line training phase they used 25 000 train-
ing pairs).

After the training was done, a number of simulation
runs had proved very good performance of the ABC
scheme while controlling time invariant nonlinear
system. Fig 4 (top) shows the plant response while
tracking input yd = sin(2πk / 25) + sin(2πk / 10). The
plant response is indistinguishable from the desired
trajectory. The tracking is perfect. Much more com-
plex task is to control the time variant nonlinear plant.
There is no general theory, approach or method in
adaptive control of nonlinear time variant plants.
These are the toughest control problems anyway. Here,
we only present initial results on how the ABC scheme
cope with such plants. We do not pretend to answer
any open question in this field, but rather we try to put
a little light on its performance.
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Figure 4    ABC:     Perfect tracking in the case of nonlinear
monotonic time invariant plant (top). Error for fixed pre-
trained NN controlling the time variant plant (bottom).
The gain is halved in 500 steps.
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Fig 4 (bottom) shows the error when the pretrained but
fixed NN tried to control fast changing plant given
below,

y k
y k

y k
k u k( )

( )

( )
. ( )= −

+ −
+ − ∗ −1

1 1
1 0 001 1

2
3( ) .

This is a model of the plant that halves the plant gain
in 500 steps. Without an adaptation the performance
error e3 = yd - y increases rapidly (Fig 4, bottom). Fig 5
shows error in the case of the on-line adaptation of
neural network. Results are obtained by using a for-
getting factor λ = 0.985. The adaptation and control
process is stable and, in comparison to the error in Fig
4, the final error in Fig 5 is three times smaller.
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Figure 5 ABC: Performance error at controlling the time vari-
ant plant with an on-line adaptation of the NN OL
weights. Forgetting factor λ=0.985. Bottom graph is in
the same scale as Fig 6 bottom).

Example 2: Consider the ABC of the following non-
linear non-monotonic dynamic plant,

yk+1 = sin(yk)*sin(uk) - uk /π (8)

This plant is an non-monotonic nonlinear function. In
other words, there is one-to-many mapping of the uk to
the yk+1. However, the function yk+1 = f (uk, yk) repre-
sents an one-to-one mapping and the ABC can suc-
cessfully model both the plant dynamics (mapping of u
to y) and the plant inverse dynamics (mapping of y to
u). The NN was optimized by using a feedforward
orthogonal least square method. The basis functions in
all neurons are the 2-dimensional Gaussians with the
same covariance matrix Σ = diag(0.0735, 0.1815). At

the beginning of the RBF selection, there were 169
symmetrically placed neurons in hidden layer and at
the and 47 centers were chosen. Such a network mod-
els the plant very well. (Note that this structure corre-
sponds to the fuzzy logic model with a rule basis com-
prised of 47 rules).
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Figure 6 ABC Top: Perfect tracking of the desired signal yd =
sin(2πk / 25) + sin(2πk / 10) for the time invariant plant
(8). Pretrained NN weights are fixed. No adaptation.
Bottom: Trajectory shown by dots lies on the surface
described by (8).
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Figure 7 ABC Top: Perfect tracking of the desired rectangular
signal for the time invariant plant (8). Pretrained NN
weights are fixed. No adaptation. Bottom: Trajectory
shown by dots lies on the surface described by (8).
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Figure 8 ABC Top: Perfect tracking of the desired ramp signal
[-2, 2] for the time invariant plant (8) Pretrained NN
weights are fixed. No adaptation. Bottom: Trajectory
shown by dots lies on or ‘sneaks through’ the surface
described by (8).

4. CONCLUSIONS

This paper presents the neural network (or fuzzy logic
model) based control of nonlinear dynamic plants. In
particular it was shown that the neural network based
adaptive backthrough control (ABC) scheme can be
successfully applied for control of both linear and
nonlinear dynamic plants. We introduced the novel
idea of using only one NN, which should simultane-
ously act as both the plant model and the model of the
plant inverse. In this way we avoided a great deal of a
redundancy while training two networks. The new
learning algorithm based on the NARMAX type of
discrete dynamic model is proposed. The ABC per-
formance seems to be superior to the other NN based
adaptive control approaches. For the linear plants, the
resulting feedforward controller, providing that the
order of the plant and of the plant model is equal, is a
perfect adaptive poles-zeros canceller. Thus, the ABC
has a character of a predictive controller. Faced with
nonlinear plants the ABC performs as an nonlinear
deadbeat controller. We presented the performance of
the ABC algorithm faced with a much more complex
task - with a control of the time variant nonlinear
plant. First simulational results seem to be very en-
couraging.
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APPENDIX

Controller Design and Performance without Noise

Results presented here are from [Salman and
Kecman, 1998]. Note that in the overall ABC scheme
we can combine two mentioned identification ap-
proaches with two different controller designs. Thus,
there are four different design algorithms. Below,
and due to the restricted space, we show the per-
formance of the ABC structure for the linear systems
without any noise, assuming perfect (i.e., bias-free)
identification.

Series Connection in Controller Design

Here, in the calculation of the control signal u, we use
the desired output signal yd and its previous values as
shown in Fig 3,

u k y k a y k i b u k i bd i d i
i

n

i

n

( ) ( ( ) � ( ) � ( )) / �= + + − + − − +
==
∑∑1 1 1 1

21

.                                                     (A1)

Plant model for the next sample is,

y k a y k i b u k ii i
i

n

i

n

( ) ( ) ( )+ + − + = − +
==
∑∑1 1 1

11

Substitution of the control action (A1) in the above
plant equation gives,

y k ay k a y k n b y k ay k a y k n

buk buk n b buk buk n

n d d n d

n n

( ) ( ) .... ( ) ( ( ) � ( ) ... � ( )

� ( ) ... � ( ))/ � ( ) ... ( )

+ + + + − + = + + + + − +

− − − − − + + − + + − +

1 1 1 1

1 1 1 1

1 1 1

2 1 2

                                                    (A2)

When the model order of the identifier equals the plant
order then as sampling time k increases; (k → ∞ ), the
identifier is a bias-free one and �a  converges to a

( �a a→ ), as well as �b b→ . Defining
e k y k y kd( ) ( ) ( )+ = + − +1 1 1  (A2) becomes,

e k a e k a e k a e k nn( ) ( ) ( ) ... ( )+ + + − + + − + =1 1 1 01 2

                                                    (A3)

Since the plant is a stable system i.e., all the poles of
the plant will be inside the unit circle, (A3) always
converges to zero. The rate of convergence depends on
the poles of the system. The more close to the origin
they are, the faster convergence occurs.

Series-Parallel Connection in Controller Design

Now, unlike the design procedure above, we use the
desired signal yd and the previous plant outputs signals
(Fig 3). In this case (A1) can be written as follows,

u k y k a y k i b u k i bd i i
i

n

i

n

( ) ( ( ) � ( ) � ( )) / �= + + − + − − +
==
∑∑1 1 1 1

21

.                                                     (A4)

The control signal of (A4) will drive the plant as fol-
lows,

yk ayk ayk n b y k ay k a y k n

buk buk n b buk buk n

n d n

n n

( ) ( ) .... ( ) ( ( ) � ( ) ... � ( )

� ( ) ... � ( ))/ � ( ) ... ( )

+ + + + − + = + + + + − + −

− − − − + + − + + − +

1 1 1 1

1 1 1 1

1 1 1

2 1 2

                                                                                  (A5)

Now, in accordance with our assumption about the

perfect identification (�a a= , �b b= ) (A5) becomes,

e k( )+ =1 0 ,                                                 (A6)

which means that the error at any sampling instant
equals zero. Unlike the series connection when the
error needs some time to converge to zero, here the
error equals zero as soon as the estimated parameters
converge to the real one. Series-parallel scheme is su-
perior in the case with noise too, [Salman and
Kecman, 1998].

Controller Design and Performance with Noise

Suppose that there exist an additive white noise dis-

turbance having variance σ 2  at the output of the
plant due to disturbances of measurements or inter-
faces, (Noise 2 in Fig 3). Noise 1 in Fig 3 affecting
the control signal only is less severe one, since the
plant acts as a filter to this type of noise. This is why
we will analyze the effect of Noise 2, in both the
series and series parallel connections of the control-
ler, below.

Series Connection in Controller Design

For simplicity of derivation let n=1, then the plant can
be written as,

y k a y k b u k k( ) ( ) ( ) ( )+ + = + ∈ +1 11 1        (A7)

where ∈ +( )k 1 is the disturbance signal at instant
k + 1. The control action (A1) is,

u k y k a y k bd d( ) ( ( ) � ( )) / �= + +1 1 1.             (A8)

The control signal u(k) of (A8) will act on the plant
model (A7),

y k a y k b y k a y k b kd d( ) ( ) ( ( ) � ( )) / � ( )+ + = + + + ∈ +1 1 11 1 1 1

.                                                     (A9)
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Again assuming that the estimated parameters �a1  and
�b1  converge to the true ones, i.e. �a a1 1=  and �b b1 1=

we obtain,

y k a y k y k a y k kd d( ) ( ) ( ) � ( ) ( )+ + = + + + ∈ +1 1 11 1

Let e k y k y kd( ) ( ) ( )+ = + − +1 1 1  then,

e k a e k k( ) ( ) ( )+ + = − ∈ +1 11 .                (A10)

For k = 0, k = 1 and k = 2 it follows,

e a e( ) ( ) ( )1 1 01= − ∈ − ,

e a a e( ) ( ) ( ) ( )2 2 1 01 1
2= − ∈ + ∈ + ,

e a a a e( ) ( ) ( ) ( ) ( )3 3 2 1 01 1
2

1
3= − ∈ + ∈ − ∈ − .

The coefficient a1  plays an important role in this algo-

rithm. For |a1| ≥ 1 the error goes to the infinity and
system shows unstable behavior. If |a1| < 1, then the
error at step k = 2 is affected mainly by the noise at the
same step, because the noise signals at step k = 1 and k
= 0 converge to zero. This is also true for higher order
systems when there are many coefficients a a1 2, ,.....,

supposing that |a1| < 1, where i n= 12, ,...,  and n is the
order of the system. For the first three steps, the above
derivation may be arranged in the following matrix
form;

e

e

e
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a a

e
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a
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( )
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( )

( )
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1 0

1

1

2

3
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1
2

1

1

1
2

1
3
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(A11)

The above conclusion is similar as the one in the study
of the effect of the noise in the Internal Model Control
(IMC) structure of [Garcia et al, 1982].

Series-Parallel Connection in Controller Design

For the first order system the plant output will be the
same as in (A7), but the control action, (A8), can be
written as,

u k y k a y k bd( ) ( ( ) � ( )) / �= + +1 1 1

(A12)

Substitute (A12) in (A7) gives,

y k a y k b y k a y k b kd( ) ( ) ( ( ) � ( )) / � ( )+ + = + + + ∈ +1 1 11 1 1 1

if �a a1 1=  and �b b0 0=  then,

( ( ) ( )) ( )y k y k kd + − + = − ∈ +1 1 1          (A13)

i.e.,

e k k( ) ( )+ = − ∈ +1 1                                 (A14)

At any sample, the output error is affected only by the
noise at this sample irrespective of any previous noise.
Equation (A14) applies for any order, assuming that
the orders of the plant and the identifier are the same.
The above structure looks better than the IMC struc-
ture [Garcia et al 1982] in dealing with noise because
just the noise at step k+1 is affecting the output.


